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Abstract Based on in situ and ground-based observations, a new type of “polar cap hot patch” has been
identified that is different from the classical polar cap enhanced density structure (cold patches). Comparing
with the classical polar cap patches, which are transported from the dayside sunlit region with dense and
cold plasma, the polar cap hot patches are associated with particle precipitations (therefore field-aligned
currents), ion upflows, and flow shears. The hot patches may have the same order of density enhancement as
classical patches in the topside ionosphere, suggesting that the hot patches may be produced by transported
photoionization plasma into flow channels. Within the flow channels, the hot patches have low-energy
particle precipitation and/or ion upflows associated with field-aligned currents and flow shears.
Corresponding Global Navigation Satellite System (GNSS) signal scintillation measurements indicate that hot
patches may produce slightly stronger radio signal scintillation in the polar cap region than classical patches.
A new type of polar cap patches, “polar cap hot patches,” is identified to differentiate enhanced density
structures from classical patches. Hot patches are associated with particle precipitations, ion upflows,
field-aligned currents, and shear flows in the polar cap. Hot patches may lead to slightly stronger ionospheric
scintillations of GNSS signals in the polar cap region than classical patches.

1. Introduction

Patches are very common phenomena in the polar cap ionosphere. They are normally defined as islands of
high-density ionospheric plasma surrounded by background plasma of half the density [Crowley, 1996].
Classical polar cap patches are often recognized to be segmented from the high-density plasma region in
the midlatitude ionosphere, where the plasma is produced through photoionization by solar EUV with and
of low temperature. This solar EUV produced plasma is drawn into the polar cap by the ionospheric convec-
tion [Knudsen, 1974; Lockwood and Carlson, 1992; Foster et al., 2005; Carlson, 1994, 2012; Lockwood et al., 2005;
Moen et al., 2006; Zhang et al., 2011, 2013a]. Weber et al. [1984] suggested that auroral particle precipitation is
also one source of polar cap patches, and MacDougall and Jayachandran [2007] also suggested that plasma
transport from the auroral precipitation regions actually dominates polar cap patch production. Basu et al.
[1990] and Crowley et al. [2000] called the plasma structures “patches” when they appeared in the polar
cap and “blobs” after they were out of the polar cap. Oksavik et al. [2015] found that the ionospheric irregu-
larities, associated with the poleward moving auroral forms (PMAFs) around cusp region, may give rise to
stronger disturbances for navigation signals than the polar cap patches. It has been observed that scintilla-
tion level of a polar cap patch significantly increases when the patch is driven into the auroral oval and
becomes exposed to particle precipitation [Jin et al., 2014, 2015, 2016; Wang et al., 2016].

Zhang et al. [2011] used the terminology Poleward-Moving Plasma Concentration Enhancements (PMPCEs)
to interpret the patches, and then Zhang et al. [2013a] divided the enhanced density structures observed
in the cusp region into two types: Type L PMPCEs (Less dense but hot plasma structures produced by preci-
pitation) and Type H PMPCEs (Higher density but cold plasma structures produced by segmentation from the
dayside sunlit region). Zou et al. [2016] also reported that patches are also related to polar cap precipitation.
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Hence, it is necessary to differentiate “patches” generated by or associated with particle precipitations from
those formed by plasma transport and segmentation from sunlit regions. Such classification of polar patch
types has not been available in literature. In this paper, we identify a new enhanced density feature in the
topside F region (“polar cap hot patches”) and show the observational differences in the characteristics of
classical and hot patches in the polar cap region by using multi-instrument observations. We also show their
effects on Global Navigation Satellite Systems (GNSS) signal scintillation.

2. Observations and Results

During the interval of about 22:15-22:45 UT on 30 January 2012, there were two DMSP satellites (F16 and F17)
crossing the polar region at about 860 km altitude one after another in the Northern Hemisphere. Both satel-
lites traversed the auroral oval before and after crossing the polar cap, which were determined by consider-
ing the boundaries of the particle precipitations and the flow reversal from sunward to antisunward. The
plasma number density showed several small variations in the topside ionosphere in the auroral oval, espe-
cially in the dusk oval early in the pass (Figure 1a), which may be due to the sunward return flow in the
dawn/dusk oval bringing the nightside low-density cold plasma and limiting the ionospheric density in aur-
oral oval at dayside sectors. The horizontal velocity in the auroral oval is sunward with enhancements asso-
ciated with the auroral arcs corresponding to the structured enhancements of precipitating energy flux in the
electron spectrum (Figures 1a and 1g), while the vertical velocity was mainly upward (Figure 1b), suggesting
an ion heating process [Zhang et al., 2016a], which can lead to strong upward ion flux (Figure 1c). During
these upflow events, the electron temperature, Poynting flux and electron and ion energy fluxes showed
clear and strong enhancements with notable regions 1 and 2 field-aligned current (Figures 1d-1f), suggest-
ing these upflows belong to auroral bulk ion upflows.

After entering the polar cap region, satellite F16 measured small enhancements of plasma density at the
beginning, when the flows turned antisunward and downward with an increasing vertical flux, a decreas-
ing region 1 field-aligned current, a slightly enhanced Poynting flux, and enhanced electron energy fluxes
from the magnetosheath (Figures 1a1, 1b1, 1c1, 1d1, 1e1, 1f1, and 1g1). Afterward, F16 encountered a
significantly enhanced region of ion number density, where the density was dominated by O* and
enhanced by about a factor of three and the electron temperature slightly decreased. These are the typi-
cal plasma features of a classical polar cap patch, suggesting it is transported from dayside sunlit region
[e.g., Zhang et al., 2011, 2013b, 2016b]. Inside this classical polar cap patch, the ion flows were very weak
and steady in antisunward and downward directions, leading to enhancements of downward O flux, the
ion temperature was increased to about 400 K higher than the electron temperature, the field-aligned
currents and Poynting flux were approximately zero, and the electron energy fluxes were very small
within energies below 1 keV. These O* fluxes may be mainly contributed by the downward falling heavy
ions, which were originally upward accelerated by the cusp/cleft ion fountain and returned back into the
polar cap due to gravity [Lockwood et al, 1985a, 1985b; Redmon et al., 2010; Zhang et al., 2016a]. After
exiting the classical patch, all parameters observed by satellite F16 remain stable except for small and
variable horizontal and vertical flows. This continues until it encountered another significantly enhanced
region of ion number density, where the ion density was also dominated by O* and enhanced by about a
factor of 4 with sharper boundaries than the classical patch, and the electron temperature was clearly
enhanced, suggesting this plasma was associated with particle precipitation. Notably, the density is larger
than for the classical patch. In order to differentiate this from a classical patch, we call this type of irre-
gularity a “polar cap hot patch,” which is located inside the polar cap near the dawnside auroral oval.
Inside the polar cap hot patch, horizontal ion flows were strongly enhanced and antisunward with strong
shears, maybe associated with flow channels [Carlson 2012, Nishimura et al., 2014], while the vertical ion
flows partially turned to weakly upward, resulting in partial upward enhancements of O* flux. Also, the
ion temperature was unstable and slightly decreased, the estimated field-aligned currents increased to
downward (around the edge of region 1 field-aligned current), the Poynting flux was clearly enhanced,
and the electron and ion energy fluxes showed several pulsed enhancements associated with auroral arcs
generated by particle precipitation from the magnetosheath (Figures 1f1 and 1g1). Note that the ion den-
sity enhancement was much sharper with several peaks in the polar cap hot patch than the classical
patch (Figure 1a1), which is clearly associated with the enhancements in the energy flux of the low-
energy precipitating particles (Figures 1f1 and 1g1). Thus, we averaged the energy flux of the low-
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Figure 1. A time series of in situ plasma parameters measured by DMSP F16 and F17. Parameters shown are (a1 and a2) plasma number densities for 0" and total
jons, (b1 and b2) the cross-track vertical and horizontal ion flow, (c1 and c2) the vertical ion flux of thermal O*, (d1 and d2) the ion and electron temperature,

(e1 and e2) the estimated field-aligned current, j,,, (f1 and f2) the calculated Poynting flux, (g1 and g2) the electron energy flux, (h1 and h2) the ion energy flux, and
(i1 and i2) the averaged energy flux for low-energy band of ions and electrons. The vertical dashed lines separate the approximate locations of the auroral zone,
classical polar cap patch, and polar cap hot patch (also highlighted by the grey area), respectively.

energy bands for ions (30-450 eV) and electrons (30-65 eV), respectively, which will help us to roughly
identify the contributions of low-energy particle precipitations in the classical and hot patches. From
Figure 1i1, we can find the averaged energy fluxes were largely enhanced around the density peaks in
the hot patch, but not in the classical patch, which further confirms the hot patch were associated
with the low energy particle precipitations.

Satellite F17 entered the polar cap region about 9 min after F16 and observed a newly growing polar cap hot
patch inside the polar cap just poleward of the duskside aurora oval with enhanced density, antisunward and
upward flows, upward O* fluxes, enhanced electron temperature, slightly increased FACs and Poynting
fluxes, and clearly enhanced precipitating electron energy fluxes. This may be not a mature hot patch but
as the initial phase of a hot patch. Afterward, F17 also encountered a classical patch and a hot patch with simi-
lar features to those inside the classical and hot patches observed by F16. The density inside the classical and
hot patches evolved and decayed by about one third from that observed by F16, where weak flows resulted
in the classical patch remaining almost stopped. The hot patch, however, moved deeper into the polar cap
because of the flow channels. The averaged energy fluxes were also clearly enhanced around the density
peaks in the polar cap hot patch, but not in the classical patch.
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Figure 2. The detailed plasma data from the polar cap hot patch observed during the interval of 22:28-22:30 UT by DMSP F16 and of 22:35-22:38 UT by F17.
Parameters shown are (a1 and a2) ion vertical velocity and number density, (b1 and b2) ion horizontal velocity, (c1 and c2) the averaged energy flux for low-

energy band for ions and electrons, (d1 a

nd d2) the estimated field-aligned current, j;;, and Poynting flux, and the averaged scatterplots with linear fitted lines (red or

blue) for these periods as the differential number density versus the averaged energy flux for low-energy band for (e) electrons and (f) ions, (g) the ion vertical

velocity, and (h) the field-aligned curren

t. The red dashed lines in Figures 2a-2d highlighted the density enhancement for comparing with other parameters.

In order to further investigate the source plasma of the density enhancements inside the polar cap hot patch,
we zoom in the plasma data during the interval of 22:28-22:30 UT for F16 and 22:35-22:38 UT for F17, when
the satellites crossed the polar cap hot patch. Figure 2 only presents the selected plasma parameters for
those intervals in the top panels to show in detail: (a1l and a2) the ion number density and vertical velocity,
(b1 and b2) ion horizontal velocity, (c1 and c2) the ion and electron averaged energy flux in the low-energy
band, and (d1 and d2) the estimated field-aligned current and Poynting flux. From Figures 2a-2d, we can find
almost every density enhancement was associated with enhancement of low-energy particle precipitations
and/or ion upflow with clear flow shear and enhancement of field-aligned current in the polar cap hot patch,
which were highlighted by the red vertical dashed lines. We also averaged the selected parameters observed
from both satellites for these periods to show in scatterplots with linear fitted lines in the bottom panels of
Figure 2. From left to right, Figure 2 shows the differential number density against the averaged energy flux
for low-energy band for (e) electrons and (f) ions, (g) the ion vertical velocity, and (h) the field-aligned current.
The X axes of the scatterplots have been divided into bins of every 0.02 eV cm 2 sr' s~ for Figures 2e and
2f, every 30 m/s for Figure 2g and every 0.02 pA for Figure 2h, and the data in each bin have been averaged
with an error bar. Linear fittings have been run for each plot, excepted for Figure 2g which has been run two
linear fits due to the roughly “V"-shape distributions. From Figures 2e-2h, we can find that there are good
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correlations between the ion density variations and the other parameters (correlation coefficients (CC) are all
larger than 0.6). Although the line slopes are not showing good linear dependences due to the different var-
iation scales between the density and the other parameters, the clear trends show that the low-energy par-
ticle precipitations and/or ion upflows clearly contributed to the density enhancements. These clearly
suggest the density enhancements in the polar cap hot patches were associated with low-energy particle
precipitations and/or ion upflows due to the field-aligned current and flow shears.

3. Discussions

Figure 1 shows that the density in classical polar cap patches and polar cap hot patches can be enhanced
with similar magnitude in the topside ionosphere but other observed properties are different, indicating that
plasma may be partially of different origin (solar EUV produced versus precipitation produced or enhanced).
In order to confirm this inference, we projected the in situ plasma parameters, observed by DMSP F17, onto a
2-D map of total electron content (TEC, the integral with height of the electron concentration, 1 TEC unit
(TECU) = 10'® el/m?) and global aurora images from the DMSP Special Sensor Ultraviolet Spectrographic ima-
ger (SSUSI) LBHS (Lyman-Birge-Hopfield bands of 140-150 nm) on a magnetic latitude (MLAT)/magnetic local
time (MLT) grid (Figure 3) [Thomas et al., 2013; Zhang et al., 2013b, 2015]. The map for the crossing of F16
shows very similar features; thus, we have not presented the F16 data. Figure 3a shows the distribution of
the O" density and the horizontal ion flows along the track of F17 satellite at approximately 860 km, which
has been projected onto a 2-D map of TEC and convection pattern measured by Super Dual Auroral Radar
Network (SuperDARN) radars. A standard two-cell convection in the polar ionosphere has been shown in
the convection pattern and horizontal velocities, which is due to a predominantly steady and negative IMF
B, with a weak B, component (resulting in an IMF clock angle varied around 180°) during the interval of inter-
est (data not shown here). Figure 3a shows that two polar cap ionization patches in the GPS TEC data are
located in the sector of North American and that the F17 satellite pass intersected one of them, which were
segmented from lower latitude sunlit high-density regions in the afternoon sectors. The locations of the
patches are highlighted by the blue ellipses. The satellite measured clear enhancements in the O* density
with very low antisunward flows when they encountered the TEC patch (Figure 3a); unfortunately, the resolu-
tion and data coverage of the TEC map is not good enough to show the enhancements when the satellite
encountered the polar cap hot patches, with clear density enhancements and strong antisunward flows.
Note that the plasma density was much lower in the morning sectors than that in the afternoon sectors of
the lower latitude regions, which may suggest that the photoionization plasma was much higher in the main
source region for the classical patch than the hot patch.

Figure 3b also projected the O* number density along the orbit of the DMSP F17 satellite onto SSUSI LBHS
auroral images. In Figure 3b, we find that there is a clear auroral arc in the polar cap just poleward of the
dawnside auroral oval, when F17 crossed the old polar cap hot patch, and a small arc separated from the
duskside aurora oval when F17 observed the new polar cap hot patch, although the auroral emissions asso-
ciated with these arcs were weakened due to the dayglow removing process. This arc may be associated with
the propagation of poleward moving auroral form (PMAFs) [e.g., Zhang et al., 2010] or bending arc [e.g., Carter
et al.,, 2015]. There is no auroral emission associated with the classical polar cap patch. This indicates that the
polar cap hot patch was associated with auroral arcs and particle precipitations and that the classical polar
cap patch may just be transported from the dayside sunlit region. With the same order of density enhance-
ment as classical patches, these hot patches were clearly associated with particle precipitation but may not
be produced by precipitations alone. This may be because of photoionization plasma being transported into
flow channels, where have low-energy particle precipitations associated with field-aligned currents and flow
shears. The upflow ions generated by the associated field-aligned currents and flow shears may contribute to
the ion density enhancement at the DMSP satellites altitude [Maggiolo et al., 2012; Y. Zhang et al., 2016]. This
suggests that one cannot properly differentiate hot patches from classical patches in the polar cap region by
using plasma density alone, but can do so by investigating other parameters together from multiple instru-
ment observations. The same logic applies to the identification classical patches as well.

In order to survey the space weather effects of the classical patches and hot patches on the GNSS navigation
signals, we selected two points: P1 [77°MLAT, 15MLT] around the initial phase of the polar cap hot patch and
P2 [82°MLAT, 13MLT] around the classical polar cap patch (highlighted by the red stars with white edges in
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Figure 3. DMSP F17 observed in situ ion parameters projected onto the 2-D maps of median-filtered TEC and the SSUSI
LBHS aurora imagers on a geomagnetic latitude (MLAT)/MLT grid [Thomas et al., 2013; Zhang et al., 2013b, 2015]. The
projected orbit of F17 is shown by the colored thick lines, where the color scale shows the O number density. The mauve
drift vectors (perpendicular to the orbit) show the measured horizontal ion flows. The black dotted line across the map is
the day-night terminator at 100 km altitude. The red stars with white edges in Figure 3a highlighted the selected locations
of P1 [77°MLAT, 15MLT] and P2 [82° MLAT, 13MLT] for Figure 3.
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Figure 4. The calibrated vertical TEC and scintillations (s, and S4) at the lonospheric Pierce Points (IPPs) altitude of 350 km
around P1 [77°MLAT, 15MLT] and P2 [82°MLAT, 13MLT].

Figure 3a). At these two points, we extracted the time series of calibrated vertical TEC (vVTEC) and scintillation
data at the lonospheric Pierce Points (IPPs) altitude of 350 km from the observations of Canadian High Arctic
lonospheric Network (CHAIN), which has 24 GPS ionospheric scintillation and TEC monitors (GISTMs),
including 9 GSV4004B systems and 15 Septentrio PolarXPro systems, and locates throughout north of
Canada [Jayachandran et al, 2009]. In this study, four CHAIN GISTMs, located at Hall Beach [68.77°N,
278.74°E], Taloyoak (about [69.54°N, 266.44°E]), Cambridge Bay [69.10°N, 254.88°E], and Resolute [74.75°N,
265.00°E], have been used to calculate vertical TEC and scintillation data. These GISTMs received signals
are from 4 GPS satellites (GPS PRN 11, 14, 17, and 32) with two satellites tracks around P1 and three tracks
around P2 (see Figure S1 in the supporting information). The vertical TEC data have been processed using
the methodology of Themens et al. [2013] and calibrated for interfrequency receiver and satellite biases by
following the method proposed in Themens et al. [2015]. The observed scintillation data has been projected
onto a grid of 1°in MLAT and 1/15 h in MLT of MLAT/MLT coordinates when the IPP was located in the grid
(normally only one point located into the grid) with elevation angle above 20°. The scintillation data were
then averaged in 3 x 3 grids centered at the selected points, where almost only one data grid or data gap
has been taken into account during the whole interval (see Movies S1 and S2 in the supporting information).
The time series of the averaged scintillation and vTEC data is presented in Figure 4. At point P1 (red lines with
snowflakes in Figure 4), the vTEC only slightly and gradually enhanced by a few TECU after about 22:19 UT
and reached the 15 TECU around 22:47 UT and then slightly decreased to the previous level, which were asso-
ciated with the initial phase of a hot patch and the maturing phase of the hot patch, partly observed by F16
and F17, and confirmed that the hot patch may not result in the clear TEC enhancement seen in the TEC map
in Figure 3. During these periods, both the amplitude and phase scintillations slightly increased when the
selected point recorded the initial phase of the hot patch around 22:34 UT, while the phase scintillation
(o,) was largely enhanced after about 22:49 UT, which may be because the hot patch grew up and became
mature one and/or be associated with a stronger presence of small-scale irregularities near the edge of the
hot patch. At point P2 (blue lines with rhombuses in Figure 4), the vTEC showed decrease from 27 to 16
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TECU during about 22:25-22:32 UT (at least, but ambiguous due to the data gaps), which are associated with
the classical patch and its evolution and decay around the selected point partly observed by F16 and F17
satellites. During these periods, the phase scintillation (¢,) showed a small enhancement at the tail edge
of the classical patch, but the amplitude scintillation index (S,4) stayed very low with only small variations.
These observations show that phase scintillation associated with the mature polar cap hot patch was stron-
ger than for the classical patch, which indicates that mature polar cap hot patches might result in stronger
ionospheric scintillations of GNSS signals in the polar cap region than classical patches. This difference in
the connection of hot patches and classical patches to scintillations in the polar cap is consistent with results
in Jin et al. [2014, 2016] indicating that the auroral BT-1 blobs (patch + precipitation) in the auroral oval at
nighttime were associated with stronger scintillations than that with a cold patch in the polar cap. Note that
the TEC and scintillation data coverage (see Movies S1 and S2 in the supporting information) is still very rare,
although CHAIN has 24 GNSS receivers in the northern part of Canada. Thus, more and more GNSS receivers
are needed to be established in the polar regions in the near future.

4. Conclusions

We report in situ and ground-based observations of a classical patch and hot patches in the polar cap region
from two polar cap crossings of the DMSP F16 and F17 satellites and GNSS receivers. These two types of irre-
gularities originated from different sources, where the classical patch was transported from the dayside sunlit
region with dense and cold plasma but the polar cap hot patches were modulated by particle precipitation
and/or ion upflows. These hot patches were located inside the polar cap just poleward of the auroral zone
with dense, hot plasma, and strong field-aligned currents as well as flow shears. This indicates that multi-
instrument observations are necessary in identifying hot patches and classical patches. The polar cap hot
patches may lead to slightly stronger ionospheric phase scintillations of GNSS signals in the polar cap region
than classical patches. These observations will provide us with new insights for understanding polar cap
dynamics, leading to improved space weather forecasts.
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