$5 \sqrt{4}$

HAYSTACK OBSERVATORY

lonospheric Disturbances During 6-10 September Solar Events

Shunrong Zhang, Anthea Coster, Phil Erickson MIT Haystack Observatory

Solar Geophysical Conditions: 6-10 Sept 2017

6 Sept 2017 @ $42.5 \pm 1.5^{\circ} \mathrm{N}$

HAYSTACK
OBSERVATORY

UTC 2017-09-06 12:09:00

$30^{\circ} \mathrm{N}$
$35^{\circ} \mathrm{N}$
$30^{\circ} \mathrm{N}$
$25^{\circ} \mathrm{N}$
$20^{\circ} \mathrm{N}$

[^0]
30-Min and 60-Min De-Trending Windows

Propagation Speed

Propagation Speed - 60 Min Window

Sept 6, 2017 Millstone Hill ISR

Another Event: X17.0 on 7 Sept 2005

Fast Decay Time: 10-20 Min

Main Conclusions

- Post-flare TIDs emanating near sunrise terminator propagated predominantly eastward with $150 \mathrm{~m} / \mathrm{s}$ zonal phase speed and $\sim 30 \mathrm{~min}$ period
- Synchronized differential TEC oscillations occurred over the continental US with 40-60 min period and decreasing amplitude over time
- Rapid and significant ionospheric up-welling developed in the topside immediately after onset of X-class flare

The overall picture: very dynamic ionospheric disturbances near the solar terminator.
lonospheric heating is substantial; conductive changes are large. Joule heating.
We hypothesize that sudden solar flare energy inputs trigger certain (but not yet completely quantified) ionospheric inherent resonances leading to observed 30-60 min synchronized TEC oscillations which are damped quickly in amplitude.

TIDs are presumably excited by the flare near the solar terminator and are therefore related to joint flare and sunrise effects. These TIDs could interact with pre-existing solar terminator induced TIDs.

1-min res. OMNI data set Sept 7, 2017

TEC (22-02UT; 13UT-; 21 UT)

MIT
HAYSTACK
OBSERVATORY
" 07:2110UT: Dusk, Greenland, Equatorward

MIT
HAYSTACK OBSERVATORY
" 08: 1440UT: Noon, Poleward and Equatorward
' 1645-18UT: Dayside EU, EW

Text

2017-09-08: 15/-70E ($\pm 7.5^{\circ}$) sectors

South Pole
0.1
0.08
0.06
0.04
0.02

North Pole 0

2017-09-08: dTEC @ Latitude: $65 \pm 05.0^{\circ} \mathrm{N}$

2017-09-08: 12/00LT Sectors (\pm 030min)

2017-09-08: 09/21LT Sectors ($\pm 030 \mathrm{~min}$)

2017-09-08: 07/18LT Sectors ($\pm 030 \mathrm{~min}$)

MIT
HAYSTACK
OBSERVATORY

[^0]: MIT
 HAYSTACK
 OBSERVATORY

